Conclusive identification of the oxybutynin-hydrolyzing enzyme in human liver.
نویسندگان
چکیده
The aim of this study was to conclusively determine the enzyme responsible for the hydrolysis of oxybutynin in human liver. Hydrolysis in human liver microsomes (HLMs) and human liver cytosol (HLC) followed Michaelis-Menten kinetics with similar K(m) values. In recombinant human carboxylesterase (CES)-expressing microsomes, CES1 was much more efficient than CES2 and yielded a K(m) value more comparable with that found in HLMs or HLC than did CES2. A correlation analysis using a set of individual HLMs, in which both CESs acted independently showed that the hydrolysis rate of oxybutynin, correlated significantly with a CES1 marker reaction, clopidogrel hydrolysis, but not with a CES2 marker reaction, irinotecan (CPT-11) hydrolysis. Chemical inhibition studies using bis-(p-nitrophenyl) phosphate, clopidogrel, nordihydroguaiaretic acid, procainamide, physostigmine, and loperamide revealed that the effects of these compounds in HLMs, HLC, and recombinant CES1-expressing microsomes were similar, whereas those in CES2-expressing microsomes were clearly different. These results strongly suggest that CES1, rather than CES2, is the principal enzyme responsible for the hydrolysis of oxybutynin in human liver.
منابع مشابه
Human Carboxymethylenebutenolidase as a Bioactivating Hydrolase of Olmesartan Medoxomil in Liver and Intestine
Olmesartan medoxomil (OM) is a prodrug type angiotensin II type 1 receptor antagonist widely prescribed as an antihypertensive agent. Herein, we describe the identification and characterization of the OM bioactivating enzyme that hydrolyzes the prodrug and converts to its pharmacologically active metabolite olmesartan in human liver and intestine. The protein was purified from human liver cytos...
متن کاملP-178: Separation and Identification of Alkaline Phosphatase Isozymes during Pregnancy
Background: Alkaline phosphatase (ALP), (EC 3.1.3.1) is a hydrolase enzyme responsible for removing phosphate groups from various molecules in the body. In humans, ALPis present in all tissues such as liver, bile duct, kidney, bone, and the placenta which detection of its activity is so useful in molecular biology. Pregnancy is associated with normal physiological changes that assist fetal surv...
متن کاملTransformation and expression of Penicillium funicolusum glucose oxidase gene in yeast
Glucose oxidase is an important enzyme hydrolyzing for its hydrolyzing activity on glucos. It possesses and has a wide board of applications in different industries such as bakery, pharmaceutical, plant pathology and biosensors. In this study, yeast (Saccharomyces cerevisiae) was transformed successfully by the glucose oxidase gene (gox) obtained from Penicillium funicolusum. The secreted gluco...
متن کاملThe Relationship between Cation-Induced Substrate Configuration and Enzymatic Activity of Phosphatidate Phosphohydrolase from Human Liver
The mechanism by which bi-and trivalent cations affect human liver phosphatidatephosphohydrolase (PAP) activity was investigated. Bivalent cations up to 1 mM increased PAP activity whereas at higher concentrations the activity of the enzyme decreased. The stimulatory concentration for trivalent cations such as Al3+ and Cr3+, however, was much lower being 2 m M and 1 m M, respectively. All catio...
متن کاملCombined Treatment with Oxybutynin and Imipramine in Enuresis
Background: Primary nocturnal enuresis is a common disorder that often leads to considerable distress in affected children and their family. In many countries pharmacologic therapy is preferred to non-pharmacologic behavioral and conditional alarm therapy. Imipramine, oxybutynin, and desmopressin have been used for enuresis with various efficacies. The aim of the present study was to compare th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 40 5 شماره
صفحات -
تاریخ انتشار 2012